Hội thảo chuyên đề: Thiết kế thuốc bằng máy tính
Nhằm tổ chức giao lưu, trao đổi, chia sẻ các kết quả nghiên cứu giữa Viện Công nghệ tiên tiến và Khoa Dược (Trường Đại học Tôn Đức Thắng), với các đơn vị thân hữu ngoài trường như: Viện Hóa học các hợp chất thiên nhiên (Viện Hàn Lâm khoa học và Công nghệ Việt Nam, Hà Nội (INPC, VAST)), Trường Đại học Dược Hà Nội, góp phần tăng cường hợp tác nghiên cứu khoa học. Viện Công nghệ tiên tiến tổ chức Hội thảo chuyên đề “Nghiên cứu các hợp chất hướng ức chế AChE hỗ trợ điều trị bệnh sa sút trí tuệ sử dụng kết hợp mô hình học máy (ML), mô phỏng động lực học phân tử và thử nghiệm trong ống nghiệm” với thông tin như sau:
- Thời gian: 8h30 ngày 20 tháng 5 năm 2025
- Địa điểm: Văn phòng Viện IAST tại Hà Nội
- Hình thức tổ chức: Trực tiếp và trực tuyến
Hội thảo có sự tham gia báo cáo của 06 Báo cáo viên, bao gồm:
- PGS. TS Phạm Minh Quân báo cáo về “Nghiên cứu sàng lọc tìm kiếm các chất có hoạt tính bảo vệ gan từ nguồn các hoạt chất thiên nhiên Việt Nam”
Tóm tắt:
Ung thư gan, trong đó ung thư biểu mô tế bào gan ở người (HCC) là loại phổ biến nhất, là nguyên nhân gây tử vong do ung thư phổ biến thứ hai trên toàn thế giới. Cho đến nay, các phương pháp điều trị vẫn chủ yếu là không hiệu quả và những nỗ lực đang được thực hiện để khám phá ra các phân tử mới hoặc các chiến lược điều trị chống lại HCC. Mortalin, một protein chaperone hsp70, được biểu hiện quá mức trong nhiều loại ung thư, bao gồm cả HCC. Mortalin liên kết với p53 do đó ngăn sự di chuyển của p53 vào nhân tế bào và dẫn đến ức chế các chức năng hoạt động của protein này. Do đó, việc ức chế các tương tác mortalin–p53 đã được đề xuất như một chiến lược phát triển thuốc chống ung thư. Sàng lọc in silico của cơ sở dữ liệu hợp chất tự nhiên đã xác định solasonine, một glycoalkaloid steroid từ họ Cà, là chất ức chế mạnh các tương tác p53–mortalin. Các nghiên cứu dược lý đã xác nhận rằng solasonine có thể ức chế hiệu quả tương tác mortalin p53 trong dòng tế bào HepG2 HCC biểu hiện cả mortalin và p53, điều này dẫn đến sự di chuyển của p53 vào nhân tế bào.
- PGS. TS Trần Phương Thảo báo cáo về “Research and Development of Novel Compounds for Alzheimer's Disease Treatment: In Silico and Experimental Approaches”
Tóm tắt:
Alzheimer's disease accounts for approximately 60% to 80% of all conditions causing memory, cognitive, and behavioral decline in humans. Alzheimer's disease has created a significant disease and economic burden on healthcare systems, with Alzheimer's patients requiring increasing levels of medical care as the disease progresses. Research and development of novel compounds for Alzheimer's disease treatment using a combination of in silico and experimental methods is a promising direction that has attracted the attention of scientists.
- ThS. Đỗ Anh Tuấn báo cáo về “Accurate structure prediction of biomolecular interactions with AlphaFold 3”
Tóm tắt:
The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein–ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein–nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody–antigen prediction accuracy compared with AlphaFold-Multimer v.2.3. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.
- DS. Thái Quỳnh Mai báo cáo về “Identification of AChE targeted therapeutic compounds for Alzheimer’s disease: an in-silico study with DFT integration”
Tóm tắt:
Alzheimer’s disease (AD) is a progressive neurodegenerative condition marked by cognitive deterioration and changes in behavior. Acetylcholinesterase (AChE), which hydrolyzes acetylcholine, is a key drug target for treating AD. This research aimed to identify new AChE inhibitors using the IMPPAT database. We used known drugs as a basis to search for similar chemicals in the IMPPAT database and created a library of 127 plant-based compounds. Initial screening of these compounds was performed using molecular docking, followed by an analysis of their drug-likeness and ADMET properties. Compounds with favorable properties underwent density functional theory (DFT) calculations to assess their electronic properties such as HOMO-LUMO gap, electron density, and molecular orbital distribution. These descriptors provided insights into each compound’s reactivity, stability, and binding potential with AChE. Promising candidates were further evaluated through molecular dynamics (MD) simulations over 100 ns and MMPBSA analysis for the last 30 ns. Two compounds, Biflavanone (IMPHY013027) with a binding free energy of − 130.394 kcal/mol and Calomelanol J (IMPHY007737) with − 107.908 kcal/mol, demonstrated strong binding affinities compared to the reference molecule HOR, which has a binding free energy of − 105.132 kcal/mol. These compounds exhibited promising drug-ability profiles in both molecular docking and MD simulations, indicating their potential as novel AChE inhibitors for AD treatment. However, further experimental validation is necessary to verify their effectiveness and safety.
- CN. Nguyễn Thị Nguyệt Hằng báo cáo về “Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management”
Tóm tắt:
Molecular docking is a computational technique that predicts the binding affinity of ligands to receptor proteins. Although it has potential uses in nutraceutical research, it has developed into a formidable tool for drug development. Bioactive substances called nutraceuticals are present in food sources and can be used in the management of diseases. Finding their molecular targets can help in the creation of disease-specific new therapies. The purpose of this review was to explore molecular docking’s application to the study of dietary supplements and disease management. First, an overview of the fundamentals of molecular docking and the various software tools available for docking was presented. The limitations and difficulties of using molecular docking in nutraceutical research are also covered, including the reliability of scoring functions and the requirement for experimental validation. Additionally, there was a focus on the identification of molecular targets for nutraceuticals in numerous disease models, including those for sickle cell disease, cancer, cardiovascular, gut, reproductive, and neurodegenerative disorders. We further highlighted biochemistry pathways and models from recent studies that have revealed molecular mechanisms to pinpoint new nutraceuticals’ effects on disease pathogenesis. It is convincingly true that molecular docking is a useful tool for identifying the molecular targets of nutraceuticals in the management of diseases. It may offer information about how nutraceuticals work and support the creation of new therapeutics. Therefore, molecular docking has a bright future in nutraceutical research and has a lot of potentials to lead to the creation of brand-new medicines for the treatment of disease.
- CN. Bùi Nguyễn Thành Long báo cáo về “Peptide-binding specificity prediction using fine-tuned protein structure prediction networks”
Tóm tắt:
Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to model the subtle structural changes accompanying sequence substitutions. Protein structure prediction networks such as AlphaFold model sequence structure relationships very accurately, and we reasoned that if it were possible to specifically train such networks on binding data, more generalizable models could be created. We show that placing a classifier on top of the AlphaFold network and fine-tuning the combined network parameters for both classification and structure prediction accuracy leads to a model with strong generalizable performance on a wide range of Class I and Class II peptide-MHC interactions that approaches the overall performance of the state-of the-art NetMHCpan sequence-based method. The peptide-MHC optimized model shows excellent performance in distinguishing binding and non-binding peptides to SH3 and PDZ domains. This ability to generalize well beyond the training set far exceeds that of sequence-only models and should be particularly powerful for systems where less experimental data are available.
- Log in to post comments