Nhảy đến nội dung

Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein

Chúng tôi vui mừng thông báo rằng TS. Ngô Sơn Tùng và các đồng nghiệp gần đây đã xuất bản công trình của họ có tựa đề " Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein" trên tạp chí Journal of Molecular Graphics and Modelling.

Tóm tắt:

Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.